ASSESSMENT OF AMBIENT AIR QUALITY OF LUCKNOW CITY

PRE-MONSOON 2017

FINDINGS OF A RANDOM SURVEY

Photo : Hazratganj, Lucknow, June 2, 2017

सीएसआईआर-भारतीय विषविज्ञान अनुसंधान संस्थान CSIR-INDIAN INSTITUTE OF TOXICOLOGY RESEARCH 31-महात्मा गाँधी मार्ग, पोस्ट बाक्स न॰ 80, लखनऊ-226001, उ.प्र., भारत

যা- महात्मी गांधी मांग, पास्ट बाक्स न० 80, लखनऊ -22000। उ.प्र. मारत VISHVIGYAN BHAWAN, 31-MAHATMA GANDHI MARG, POST BOX NO 80, LUCKNOW-226001

ASSESSMENT OF AMBIENT AIR QUALITY OF LUCKNOW CITY DURING PRE-MONSOON, 2017

Team Leader	:	Dr S.C. Barman
Co-Team Leader	:	Dr G.C. Kisku Er A.H. Khan
		Dr Jyotsna Singh
Other Participants	:	Mr Tajuddin Ahmed
(Technical)		Mr Pradeep Shukla
		Mr Khalil Ahmed
		Mr B.M. Pandey
Other Participants	:	Mr Hamid Kamal
(Project Fellows)		Mr Ankur Dixit
		Mr Mohd Irfan
		Mr Rohit Yadav
		Ms Riddhi Rai

वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH

CONTENTS

Sali	lient Features of the Study 1							
1.0	SUMMARY 2							
1.1	INTRODUCTION	3						
1.2	MONITORING LOCATIONS AND METHODOLOGY	9						
1.3	RESULTS 1.3.1 Respirable Suspended Particulate Matter (RSPM or PM ₁₀) 1.3.2 Fine Particulate Matter (PM _{2.5}) 1.3.3 Sub Fraction of Fine Particles (PM ₁ , PM _{0.56} , PM _{0.32} , PM _{0.18} , PM _{0.1}) 1.3.4 Sulphur Dioxide (SO ₂) 1.3.5 Oxides of Nitrogen (NO _x) 1.3.6 Trace Metals in Ambient Air (RSPM) 1.3.7 Noise Level	10 10 11 12 12 16 17						
1.4	 TRENDS OF AMBIENT AIR QUALITY IN LUCKNOW CITY 1.4.1 Respirable Suspended Particulate Matter(RSPM or PM₁₀) 1.4.2 Fine Particulate Matter (PM_{2.5}) 1.4.3 Sulphur Dioxide (SO₂) 1.4.4 Oxides of Nitrogen (NO_x) 1.4.5 Noise Level 	18 18 19 19 19 24						
1.5	HEALTH EFFECTS	27						
1.6	CONCLUSIONS	30						
1.7	1.7 RECOMMENDATIONS 32							
Ack	nowledgements	33						
	Annexure-1: Skill Development Annexure-2: Brochure-Public Awareness for Clean Environment	34 35						

Salient Features of the Study

 Geographical Position 	: 26° 52' N Latitude 80° 56' E Longitude
	128 m above Sea Level
* Area	: 310 sq. km.
* Population	: 28,15033 as per 2011 Census
Projected Population	: 65 lakhs as per Master Plan 2031
General Climate of Lucknow city	 Subtropical climate, cool dry winter (Dec Feb.) & summer (Mar Jun.). Temperature about 45°C in summer to 3°C in winter. Average annual rainfall about 100 cm.
 Total Vehicular Population in Lucknow city as on 31/03/2017 	: 19,78,345
Growth of Vehicle over 2015-2016	: 6.1%
Total No. of Filling Stations	: 123
(Petrol/Diesel/CNG)	
Consumption of Petrol	: 1,93,345 KL
Consumption of Diesel	: 2,30,626 KL
Consumption of CNG	: 3,21,34,736 Kg
Major Sources of Pollution	: Automobiles, D. G. sets, Construction activities
Parameters Monitored	: PM ₁₀ , PM _{2.5} , Sub-fraction of fine Particles, SO ₂ , NO _x , trace metals and noise levels
Study Conducted by	: Environmental Monitoring Division CSIR- IITR, Lucknow

ASSESSMENT OF AMBIENT AIR QUALITY OF LUCKNOW CITY DURING PRE-MONSOON, 2017

1.0 SUMMARY

The study was carried out during the months of April-May, 2017 to assess the status of air quality by monitoring and assessment of some selected air pollutants namely Respirable Suspended Particulate Matter (RSPM or PM_{10}), Fine particles ($PM_{2.5}$), Sulphur Dioxide (SO₂), Oxides of Nitrogen (NOx) and trace metals-Lead (Pb) and Nickel (Ni)and noise level at 9 representative locations, categorized as residential (four), commercial (four) and industrial (one) areas in Lucknow city. The results revealed the 24 hours concentration of PM_{10} to be in the range of 140.5 to 310.6 $\mu q/m^3$ with an average of 222.8 $\mu q/m^3$. The 24 hours concentration of PM_{2.5} was found to be in the range of 66.7 to 169.0 $\mu q/m^3$ with an average of 109.4 $\mu q/m^3$. The average values of PM₁₀ and PM_{2.5} irrespective of locations were found to be above the permissible limit (100 μ g/m³ for PM₁₀ and 60 μ g/m³ for PM_{2.5} prescribed by MoEF). Twenty four hours concentration of SO₂ and NOx were found to be in the range of 6.8 to 16.7 and 25.7 to 97.8 $\mu q/m^3$ with an average concentration of 11.7 and 49.7 $\mu q/m^3$ respectively and all the values were below the permissible limits (80 μ g/m³). The mean level of trace metals were Pb = 219.97 and Ni = 48.34 ng/m³. Noise levels during day and night time were found to be in the range of 65.8 to 81.4 dB (A) and 56.3 to 67.4 dB (A) respectively which was above the respective permissible limits except in industrial area.

1.1 INTRODUCTION

Air pollution and related epidemiological studies reported throughout the world revealed that air pollutants are one of the important mass human killers besides its effect on global warming as well as climate change. Reports suggest that immediate sincere attention is required to bring down the air pollutants level and to move towards successful implementation of our national mission i.e. Swachch and Swasth Bharat. It is known that air pollution is a serious issue as millions of people especially in urban area are exposed to high levels of air pollutants, mainly to particulate pollution and some selected gaseous pollutants, likely oxides of nitrogen and surface ozone.

Urban air pollution is mainly caused by burning of fossil fuels (Diesel, petrol, CNG, LPG by vehicles, diesel by generator sets and LPG by cooking, etc), burning of solid waste especially municipality waste etc, re-suspension of soil, construction activity and nearby burning of agriculture waste etc.

Source of urban air pollutants are multiple and their combined effects make pollutants composition complex and variable. The level of pollutants and fate (speciation) also depends on the source and fuel type, technological development and micrometeorological conditions.

Generally the main sources of air pollutants in our major cities are similar. There are several organizations in India which are engaged in urban pollution studies and have reported that particulate matters (PM₁₀ and PM_{2.5}) levels are much higher than the permissible limit. Particulate matter is a carrier of other pollutants associated with it, like trace elements (Fe, Ca, Pb, Cu, As, Cd, Al, Na, K, Zn, Cr, Co, Ni etc.) and organic pollutants like Poly aromatic hydrocarbon (PAHs) etc., which are responsible for human health effects.

CSIR-IITR, Lucknow took the issue seriously, way back in 1997 and has been striving hard since then for creation of mass awareness among public, scientific community,

academicians and regulatory authorities. We have ensured skill development of sizable number of students, by providing training, in the areas of monitoring, testing and management of air pollutants. In this connection, CSIR-IITR has been assessing ambient air quality of urban area of Lucknow city during pre (April and May) and post (Sept and October) monsoon with respect to criteria pollutants namely Particulate Matter, SO₂ and NO_x since 1997.

Lucknow is a fast growing city. In 1951, area of Lucknow was 48 sq km which has now increased to 310 sq.km in 2011. As per 2011 census, the city has a population of 28.15 lakh (Municipal Corporation + Cantonment).

In the proposed master plan 2031 (Lucknow Development Authority), the area of the city will increase to 654 sq.km by inclusion of 197 villages, with a projected population of 65 lakh. This will lead to the change of land use plan of existing open/agricultural area to residential, commercial or industrial. The net result would be more activities and more population. The, first phase of metro rail construction from Airport to Charbagh railway station is still to be completed, and the 2nd phase (underground) from Charbagh to Parivartan chowk and then onwards to Munshipulia via IT Chauraha is under progress. Traffic on these main routes of the city is badly affected. Particularly the fleet of special purpose vehicle (Luxury low floor CNG city buses) operated by Lucknow City Transport Services Limited (LCTSL) have been forced to change their route due to metro construction resulted in the drastic downfall (about 50%) in passenger numbers. The passengers have begun to use small vehicle (autos etc) on regular routes (narrowed due to metro construction) with more vehicles and heavy traffic jam leading to high emission during the construction phase along the metro rail route.

During the past 20-25 years, a large number of shops, hospitals, hotels etc. were opened in the residential areas of newly developed colonies. Most of the main and side lanes are full of encroachment. The vehicle parking by consumers is one of the major causes of traffic jams across the city. The garbage dumps on roads release

pollutants and disease causing microbes. When the garbage spreads on the road, it is crushed by vehicles and fine dust comes into air, resulting in its conversion to a significant air pollution source. These activities also add to the pollution level of the city.

Vehicular traffic is the main source of particulate air pollution in Lucknow city. The number of different categories of vehicles registered with RTO (Regional Transport Office) Lucknow is 19, 78,345 as on 31.03.2017 which is 6.10% higher over the last year (Table 1). Uttar Pradesh State Road Transport Corporation (UPSRTC) introduced bus services under the banner *"Lucknow City Transport Services Limited"* on different routes of Lucknow city. The details of bus routes and number of buses plying as on 31.03.2017 are given in Table 2. In Lucknow city there are 123 filling stations for petrol, diesel and CNG operated by different oil and gas companies (Table 3).

As per Oil Marketing Company (IOC, BPC and HPCL), the consumption/sale of petrol and diesel was 1,93,345 and 2,30,626 KL as on 31-03-2017. It is observed that petroleum sale has increased by 11.36% whereas sale of diesel has increased by 26.38%. (Table 4). In Lucknow there are nine CNG filling stations and consumption of CNG in the last year was approximately 3,21,34,736 kg (2016-17) which was 6.24% higher than the previous year (2015-16) (Green Gas Limited, Lucknow). Distribution and number of CNG vehicles in Lucknow is summarized in Table 5. The expansion of city is still continued, converting the land use from agricultural to residential/ commercial/ industrial. As a result, there has been an increase in air pollution levels of the city. Considering the above, assessment of ambient air quality of Lucknow city was carried out at 9 locations during pre monsoon (April-May), 2017 with respect to PM₁₀, PM_{2.5}, sub-fraction of fine particles, SO₂, NO_x, trace metals and noise level with the following aims and objectives.

- To assess the ambient air quality with respect to PM₁₀, PM_{2.5}, SO₂, NOx, and trace metals (Ni and Pb) associated with PM₁₀.
- To study trends of pollutants over a period of time.
- To assess day and night time noise levels.
- To create a database for future use.
- To create public awareness about environmental pollution.

		Number of	%		
S.No.	Type of Vehicle	Vehicles as c	Change		
		2015-16	2016-17		
1	Multi Articulated	3891	3556	-8.61	
2	Light, Medium and Heavy weight Vehicles	22100	26225	12.00	
2	(Four wheeler)	23100	20225	15.09	
2	Light commercial vehicles	2527	2409	2 65	
³ (Three wheeler)		5557	5406	-5.05	
4	Buses	3466	3324	-4.09	
5	Taxi	11957	10003	-16.34	
6	Light Motor Vehicles (Passenger)	9019	7606	-15.67	
7	Two wheelers	1480458	1582255	6.88	
8	Car	267012	274853	2.94	
9	Jeep	30399	35592	17.08	
10	Tractor	25094	24919	-0.70	
11	Trailors	1648	1727	4.79	
12	Others	4887	4877	-0.20	
	Total	18,64,556	19,78,345	6.10	

Table 1 **Comparison of Vehicular Population in Lucknow**

Source: RTO, Lucknow

S. No	Route No.	To and Fro	No. of Buses	Frequency
1	11	BBD – Chinhat - Gomti Nagar - Alambagh Malhaur Railway Station - Gomti Nagar - Dalibagh - Charbagh Charbagh - Alambagh - Avadh Hospital - SGPGI Charbagh - Alambagh - Sardar Patel Dental College BBD - Chinhat - Awadh Hospital Charbagh - Alambagh - BBAU Charbagh - Alambagh - BBAU Charbagh - Alambagh - Gopesh Kunj - Kalindi Park Khargapur - Patrakarpuram - Alambagh	12	15 minute interval
2	12	Barabanki - Safedabad Crossing - Ramswarup College - Tewariganj -BBD - Chinhat - HAL Nishatganj - Sikindrabad - KKC College - Charbagh	24	15 minute interval
3	12 D	Charbagh – KKC- Vikas Deep-Husainganj-Burlington— Bapu Bhawan- GPO-Shakti Bhawan- Sikanderbagh- Dainik Jagaran-Trikonia Park- FUN Republic-Lohia park-BB D Academy- CMS- Vishal Khand—PS Gomtinagar-Chinhat More-matiaretoraha-mati-DEVA.	05	45 minute interval
4	23	Integral University-Gudamba-Vikasnagar– Nishatganj- Sikandrabad - Hussainganj - Alambagh - Rajnikhand Gudamba - Badshanagar - Avadh Hospital	17	10 minute interval
5	31	IM Sector Q-Beligaradh-PNT-Purania-Kapoorthala- ChanniLaL -Mahanagar -Gole market - Badhshanagar- Nishatganj - Hussainganj - Charbagh - Alambagh Chouraha.	2	60 minute interval
6	31 A	Charbagh - Hussainganj - Sikandrabagh - Gokhale Marg - Nishatganj - Badshahnagar - Gole market - Channilal-Kapoorthala-Purania-Engineering College - Sewa Hospital - Bakshi Ka Talab	1	120 minute interval
7	33	Engineering College - Charbagh - Alambagh - Scooter India	12	20 minute interval
8	33 C	Bhitoli - CDRI Chowraha - Jankipuram - Purania - Mahanagar -Badshahnagar - Nishatganj - Hussainganj - Charbagh - Alambagh Cowraha.	4	20 minute interval
9	33 S	Bhitoli Chowraha - Engineering College – Kapoorthala - Badshahnagar – Nishatganj – Hussainganj – Charbagh – Alambagh -Bhudeswar Chowraha - Dr. Sukuntala Mishra University.	1	180 minute interval
10	33 PGI	SGPGI - Telibagh - Alambagh - Charganj - Hussainganj - GPO -Mahanagar - Engineering College.	8	12 minute interval
11	33 LU	Parivartan Chowk - IT Chowraha - Vivekananda	2	45 minute

Table 2 Details of Lucknow City Bus Service, 2017

		Hospital -Kapoorthala - Engineering College - New Campus Lucknow University		interval
12	43H	New High Court-Polytechnic-Munshiphulia- Khuramnagar Chowraha-Jagrani Chowraha- Teriphulia-Dubagga Chowraha	04	45 minute interval
13	45	Virajkhand - Gomti Nagar - Charbagh - Alambagh - Paasi Kila -Aurangabad - Shahid path	14	15 minute interval
14	48.B	Kesarbagh-Bapubhawan-Chief minister house-Lohia Chowraha-Polytechnic-Aahimou-Khurdahi Bazar- Gosainganj-Haidergarh/	02	120 minute interval
15	500 S	Raja Suchana Aayog-Kamta Chowraha-Aahimau- Uttaria-PGI-Mohanlalganj-Sisandhi	01	120 minute interval
		Total	107	

Source: Lucknow City Transport Services Limited.

Table 3 Fuel Outlets in Lucknow City

S.No.	Agency	Number of outlets as on 31 st March 2017
1	Indian Oil Corporation (IOC)	51
2	Bharat Petroleum Corporation Ltd. (BPCL)	37
3	Hindustan Petroleum Corporation Ltd. (HPCL)	26
4	Compressed Natural Gas Stations (CNG)	9
Total		123

Source: Indian Oil Corporation (IOC), Lucknow, Bharat Petroleum Corporation (BPCL), Hindustan Petroleum Corporation (HPCL), * CNG Source: Green Gas Limited, Lucknow.

	Agency	Petrol in KL			High Speed Diesel in KL			CNG		
S.N.		Apr. 15 to Mar. 16	Apr. 16 to Mar. 17	% Change	Apr. 15 to Mar. 16	Apr. 16 to Mar. 17	% Change	Apr. 15 to Mar. 16	Apr. 16 to Mar. 17	% Change
1	IOC	90507	103065	13.87	86101	91101	5.81			
2	BPCL	50570	54630	8.03	54990	55655	1.20			
3	HPCL	32540	35650	9.56	41390	83870	102.63			
4	Green Gas							30246000	32134736	6.24
Tota		173617	193345	11.36	182481	230626	26.38	30246000	32134736	6.24

Table 4Consumption of Fuel in Lucknow

Source: Indian Oil Corporation (IOC), Lucknow, Bharat Petroleum Corporation (BPCL), Hindustan Petroleum Corporation (HPCL), CNG Source: Green Gas Limited, Lucknow.

S.No.	Vehicles	Nur	% of	
		2015-16*	2016-17*	Change
1	Auto Rickshaws	4343	4343	
2	Tempo Taxi	2575	2575	
3	Buses (UPSRTC)	260	260	
4	Buses (Private)	34	40	
5	School Buses	1099	1201	9.28
6	School Van	1404	1731	23.39
7	Private Vehicles	205	205	
8	Private Cars	9783	10851	10.92
	Total	19,703	21,206	7.63

Table 5 Distribution of CNG vehicles

Source: RTO, Lucknow

1.2 MONITORING LOCATIONS AND METHODOLOGY

Nine air quality monitoring locations representing different activities/areas i.e., four in residential, four in commercial cum traffic and one industrial area were selected for the study as summarized in Table 6. Brief description of each location is given in our earlier reports (Pre and Post monsoon, 2010) and parameters along with methodology are given in Table 7.

S.No. Locations Activities Residential 1 Aliganj 2 Vikas Nagar Residential 3 Indira Nagar Residential 4 Residential Gomti Nagar 5 Charbagh Commercial cum traffic 6 Alambagh Commercial cum traffic 7 Aminabad Commercial cum traffic 8 Commercial cum traffic Chowk 9 Amausi Industrial

Table 6 Monitoring Locations

SI. No.	Parameters	Time Weighted average	Methods of Measurement
1	Particulate Matter (PM_{10})	24 hours	Gravimetric
2	Fine Particles (PM _{2.5})	24 hours	Gravimetric
3	Sulphur dioxide (SO ₂)	24 hours	Improved West Gaeke
4	Nitrogen Dioxide(NO ₂)	24 hours	Modified Jacob & Hochhesier
			(Na-Arsenite)
5.	Trace Metals -	24 hours	AAS method after sampling on EPM
	(Pb & Ni)		2000.
6	Noise Level	1 hour	The measurement of noise level was
			carried out during the day (6 AM to
			10 PM) and night time (10 PM to 6
			AM) by Noise Level Meter.

 Table 7

 Parameters and Methodology for Air Quality Monitoring

1.3 RESULTS

The detailed results of air quality monitoring are presented in Table 8 and Figure 1.

1.3.1 Respirable Suspended Particulate Matter (RSPM or PM₁₀)

In residential areas (Aliganj, Vikas Nagar, Indira Nagar and Gomti Nagar), the 24 hours average concentrations of PM_{10} were in the range of 193.6 to 240.8 µg/m³ with an average of 223.6 µg/m³. In commercial areas (Charbagh, Alambagh, Aminabad and Chowk) the average concentrations of PM_{10} were in the range of 189.2 to 310.6 µg/m³ with an average of 234.7 µg/m³ respectively. In industrial area (Amausi), the average concentration of PM_{10} was 210.1 µg/m³.

The maximum 24 hours mean concentration of PM_{10} was observed in Indira Nagar (240.8 μ g/m³) in residential area and Chowk (310.6 μ g/m³) in commercial areas. All the values of PM_{10} were above the prescribed National Ambient Air Quality Standard (NAAQS) of 100 μ g/m³ for industrial, residential, rural and other areas respectively.

1.3.2 Fine Particulate Matter (PM_{2.5})

In residential areas (Aliganj, Vikas Nagar, Indira Nagar and Gomti Nagar), the 24 hours average concentrations of $PM_{2.5}$ were in the range of 93.4 to 124.1 µg/m³ with an average of 107.5 µg/m³. In commercial areas (Charbagh, Alambagh, Aminabad and Chowk) the average concentrations of $PM_{2,5}$ were in the range of 98.5 to 127.5 µg/m³ with an average of 114.5 µg/m³ respectively. In industrial area (Amausi), the average concentration of $PM_{2,5}$ was 106.3 µg/m³.

The maximum 24 hours mean concentration of $PM_{2.5}$ was observed in Indira Nagar (124.1 μ g/m³) residential area and Chowk (127.5 μ g/m³) in commercial area.

All the values of $PM_{2.5}$ were above the prescribed National Ambient Air Quality Standard (NAAQS) of 60 μ g/m³ for industrial, residential, rural and other areas.

1.3.3 Sub Fraction of Fine Particles (PM₁, PM_{0.56}, PM_{0.32}, PM_{0.18}, PM_{0.1})

The monitoring of sub fractions of fine particles was conducted during the month of May, 2017 at two locations i.e. city commercial area (CSIR-IITR, Main Campus) and in rural area (CSIR-IITR, Gheru Campus) are reported in Table 9. The 24 hours mean mass concentrations of PM₁, PM_{0.56}, PM_{0.32}, PM_{0.18} and PM_{0.1} were found to be 27.02, 19.72, 16.35, 19.83 and 16.87 μ g/m³ respectively and total particulate level was 99.79 μ g/m³ in city commercial area. Similarly mass concentration in all the same fractions values for village/rural area were 13.44, 11.26, 13.49, 14.87 and 8.40 μ g/m³ respectively with total value was 61.46 μ g/m³. Average concentration of particulate matter in sub-fractions was higher in commercial area of Lucknow city as compared to rural area (Figure 2). For these particles, no International and National guideline is available at this point of time.

1.3.4 Sulphur Dioxide (SO₂)

In residential areas (Aliganj, Vikas Nagar, Indira Nagar and Gomti Nagar) the mean levels of SO₂ were in the range of 10.0 to 14.0 μ g/m³ with an average of 11.1 μ g/m³. In commercial areas (Charbagh, Alambagh, Aminabad and Chowk) the average concentrations of SO₂ were in the range of 10.9 to 13.5 μ g/m³ with an average of 11.8 μ g/m³. In industrial area (Amausi), the mean level of SO₂ was 12.2 μ g/m³.

All the values of SO₂ were well below the prescribed NAAQS of 80 $\mu\text{g/m}^3$ for all the locations.

1.3.5 Oxides of Nitrogen (NOx)

In residential areas (Aliganj, Vikas Nagar, Indira Nagar and Gomti Nagar) the 24 hours average concentrations of NO_X were found in the range of 43.4 to 55.7 μ g/m³ with an average of 46.9 μ g/m³. In commercial areas (Charbagh, Alambagh, Aminabad and Chowk) the average concentrations of NO_X were found in the range of 45.7 to 67.8 μ g/m³ with an average of 54.6 μ g/m³. In industrial areas (Amausi), the average concentration was 47.6 μ g/m³.

All the values of NO_x were within the prescribed NAAQS of 80 $\mu g/m^3$ for all the monitoring locations.

Table 8 Concentration (μ g/m³) of PM₁₀, PM_{2.5}, SO₂ and NO_x during pre monsoon 2017

Location	PM ₁₀ (RSPM)		PM _{2.5}		SO ₂			NOx				
Residential												
	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
Aliganj	163.7	280.3	228.7	93.1	129.4	103.9	7.1	13.4	10.1	29.9	64.4	48.4
Vikas Nagar	165.0	226.5	193.6	66.7	127.1	93.4	6.8	13.5	10.3	25.7	53.9	43.4
Indira Nagar	178.0	389.3	240.8	99.7	166.1	124.1	9.2	17.4	14.0	35.3	68.0	55.7
Gomti Nagar	173.4	298.4	231.4	90.6	132.2	108.4	8.5	11.5	10.0	31.2	55.8	40.2
Commercial												
Charbagh	203.1	289.3	242.5	70.9	169.0	122.3	8.4	15.3	11.4	26.8	88.7	56.0
Alambagh	140.5	235.7	189.2	70.7	137.0	98.5	9.4	13.7	11.3	31.7	62.0	45.7
Aminabad	160.1	250.9	196.4	80.1	146.8	109.7	8.0	12.0	10.9	31.8	86.2	48.9
Chowk	178.1	373.3	310.6	92.3	158.5	127.5	9.0	16.7	13.5	40.8	97.8	67.8
Industrial												
Amausi	170.4	241.2	210.1	80.5	132.0	106.3	9.0	16.7	12.2	28.1	61.1	47.6
NAAQS		100			60			80			80	
WHO		50			25			20*			40*	
Guidelines		50		25		20			40			

N=6, *= Annual Average, NAAQS=National Ambient Air Quality Standard

Table 9

Mass concentration of Sub Fraction of Fine Particles (24 hours mean) during pre monsoon 2017

Sub Fraction of Fine	City co	mmercial a	rea	Rural area			
Particulates	(CSIR-IITR N	/I.G. Road C	ampus)	(CSIR-IITR Gheru Campus)			
	Min.	Max.	Avg.	Min.	Max.	Avg.	
PM _{1.0} (≤1µm)	25.09	28.10	27.02	13.24	13.91	13.44	
PM _{0.56} (≤0.56µm)	19.49	19.96	19.72	9.75	12.72	11.26	
PM _{0.32} (≤0.32µm)	15.27	17.36	16.35	11.55	15.40	13.49	
PM _{0.18} (≤0.18µm)	18.75	21.54	19.83	13.39	17.03	14.87	
PM _{0.1} (≤100nm)	15.45	18.60	16.87	6.83	10.20	8.40	
Total (fine)	94.05	105.56	99.79	54.76	69.26	61.46	

No. of samples = 3; Instrument used: MOUDI Cascade Impactor, USA

Micro Orifice Uniform Deposit (MOUDI) Cascade Impactor

वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH

Mean Level of PM₁₀ in different locations

Mean Level of PM_{2.5} in different locations

Mean Level of SO₂ in different locations

Mean Level of NO_x in different locations

Figure 1: Concentration (μ g/m³) of PM₁₀, PM_{2.5}, SO₂ and NO_x in different areas of Lucknow city during pre monsoon season (2017) and compared with prescribed National Ambient Air Quality Standard (NAAQS)

वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH

Figure 2: Pre-Monsoon levels of particulate matter in fine particle sub-fraction

1.3.6 Trace Metals in Ambient Air (RSPM)

The trace metals (Pb and Ni) were estimated in ambient air associated with PM_{10} at 9 monitoring locations. The results are present in Table 10.

The 24 hr mean concentration of metals were found to be Pb = 219.97 (120.53 - 456.42) and Ni = 48.34 (32.52 - 81.97) ng/m³. The mean level of Pb and Ni were found to be 76.65 and 22.35% increased over the previous year during pre monsoon.

Metal Concentration in ng/m [°] associated with PM ₁₀						
S.No.	Location	Lead(Pb)	Nickel (Ni)			
1	Aliganj	250.61	81.97			
2	Vikas Nagar	137.42	51.48			
3	Indira Nagar	120.53	32.52			
4	Gomti Nagar	151.64	38.56			
5	Charbagh	204.78	55.05			
6	Alambagh	225.82	37.04			
7	Aminabad	175.90	37.47			
8	Chowk	256.58	54.19			
9	Amousi	456.42	46.80			
Mean		219.97	48.34			
NAAQS		1000	20*			

Table 10Metal Concentration in ng/m³ associated with PM10

N= 1, *=Annual Average

1.3.7 Noise Level

The noise monitoring data recorded during the pre monsoon period (May, 2017) is presented in Table 11.

In residential areas, the day and night time noise levels were recorded between 65.8 to 72.1 and 56.3 to 63.3 dB(A) respectively. All the values were higher than the prescribed limits of 55 and 45 dB (A) for day and night time respectively.

In commercial and traffic area, the day and night time noise levels were recorded between 75.2 to 81.4 and 58.0 to 67.4 dB(A) respectively. Noise level at all the commercial sites during day and night time were found above the prescribed limits of 65 and 55 dB (A) respectively. In industrial area Amausi, the day and night time noise levels were recorded 76.5 and 65.0 dB (A) respectively. Noise levels at industrial area during day and night time were recorded lower than the prescribed limits of 75.0 and 70.0 dB(A) respectively.

S. No.	Area	Location _	Noise level dB(A)	
			Day	Night
1	Residential	Aliganj	65.8	62.5
		Vikas Nagar	67.2	61.2
		Indira Nagar	72.1	63.3
		Gomti Nagar	70.5	56.3
		Standard	55.0	45.0
2	Commercial	Charbagh	81.4	67.4
		Alambagh	78.8	60.7
		Aminabad	75.2	58.0
		Chowk	76.8	66.8
		Standard	65.0	55.0
3	Industrial	Amausi	74.5	65.0
		Standard	75.0	70.0

 Table 11

 Noise Level dB (A) during Day and Night Time

1.4 TRENDS OF AMBIENT AIR QUALITY IN LUCKNOW CITY

The observed PM_{10} , SO_2 and NO_x for 3 years data and $PM_{2.5}$ with last two year data have been compared to find out the prevailing trend of air pollution in Lucknow city (Figures 3-6). A slight change in the values may be attributed to some local environmental and climatic factors.

1.4.1 Respirable Suspended Particulate Matter (RSPM or PM₁₀)

In the residential areas, comparatively higher values were found at all the residential areas, whereas higher values were also observed in two commercial areas (Charbagh and Chowk), whereas one industrial area showed lower value when compared to the data of the previous year. All the values are higher than the NAAQS (Figure 3).

1.4.2 Fine Particulate Matter (PM_{2.5})

The level of $PM_{2.5}$ has been compared with the last year data and all the values of residential, commercial (except Alambagh and one Industrial areas) were found to be higher than the previous year. All the values of the present study were found to be higher than the NAAQS (Figure.4).

1.4.3 Sulphur dioxide (SO₂)

The level of SO₂ during pre monsoon since 2014 is presented in Figure 5 for all the locations. In residential areas, lower concentrations of SO₂ were found at all locations (except Indira Nagar) compared to that of the previous year. Among the commercial areas (except Chowk, SO₂ values showed slightly lower value over the last year. Industrial area (Amausi) also showed slightly higher value over the last year. All the values of the present study were found to be lower than the NAAQS (Figure 5).

1.4.4 Oxides of Nitrogen (NO_x)

The level of NOx during pre monsoon since 2014 is presented in Figure 5 for all the locations. Among the residential and commercial areas all the locations showed increasing trend, and the only industrial area Amausi also showed higher value when compared with the previous year data. All the values of the present study were found to be lower than the NAAQS (Figure 6).

वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH

PM₁₀ Level in Residential Areas

Figure 3: Concentration (μg/m³) of PM₁₀ (RSPM) in Residential, Commercial and Industrial areas of Lucknow city during 2014 to 2017 and compared with prescribed National Ambient Air Quality Standard (NAAQS)

वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH

Figure 4: Concentration (μg/m³) of PM_{2.5} in Residential, Commercial and Industrial areas of Lucknow city during 2015 to 2017 and compared with prescribed National Ambient Air Quality Standard (NAAQS) SO₂ Level in Residential Areas

वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH

SO₂ Level in Commercial Areas

Figure 5: Concentration (μg/m³) of SO₂ in Residential, Commercial and Industrial areas of Lucknow city during 2014 to 2017 and compared with prescribed National Ambient Air Quality Standard (NAAQS)

वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH

NO_X Level in Industrial Areas

Figure 6: Concentration (μ g/m³) of NO_x in Residential, Commercial and Industrial areas of Lucknow city during 2014 to 2017 and compared with prescribed National Ambient Air Quality Standard (NAAQS)

1.4.5 Noise Level

Current year's noise data was compared with the corresponding data of the previous three years (2014 to 2016 and presented in Figure 7 and 8. The comparative noise levels in residential, commercial and industrial areas are described below:

1.4.5.1 Day time Noise Level

In residential areas, all the locations showed slightly decreasing trend over that of the previous year except Indira Nagar. In commercial cum traffic areas, noise level was found to be on the higher side at all the locations were recorded compared to that of previous year. In industrial area (Amausi) the noise level was slightly lower than that of the previous year. The comparative data are presented in Figure 7.

1.4.5.2 Night time Noise Level

Residential areas showed slightly higher level than that of the last year except Gomti Nagar. In commercial areas, little variation in higher side was recorded at Aminabd and Chowk and the only industrial area showed slightly lower value than that of the previous year. The comparative data are presented in Figure 8.

वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH

Day time Noise level in Residential Areas

Day time Noise level in Industrial Area

Figure 7: Comparison of day time Noise Level dB(A) in different areas of Lucknow city (2014-2017)

2014 2015 2016 2017 100 80 60 dB(A) 40 20 0 Aliganj Vikas Nagar Indira Nagar Gomti Nagar Standard

Night time Noise level in Residential Areas

1.5 HEALTH EFFECTS

The air pollution levels for different pollutants are observed to be higher than the NAAQS-2009 in most of the Indian cities. The newly introduced indicator i.e. Air Quality Index was also recorded to be in the range of Poor (201-300), Very Poor (301-400) and Severe (>400) in various cities. Higher levels of air pollutants including metals have adverse effects on human and environmental health. Air Pollution creates series of significant health problems including (i) premature death (ii) aggravated asthma (iii) acute respiratory symptoms and (iv) decreased lung function in the form of shortness of breath and chronic bronchitis etc. Particulate matter is also a major cause of visibility impairment enhancing coefficient of haze in many parts of Asian countries and United States because these particles can scatter and absorb light. Further fine particles can remain suspended in air and travel long distances across regional and international borders without sinking and settling. Numerous epidemiological studies indicate that an increase in particulate matter concentration is associated with increased mortality, increased hospitalization for respiratory and cardio vascular diseases increased respiratory symptoms and decreased lung functions.

Sulphur Dioxide (SO₂) is a colorless water-soluble gas and smells like burnt matches. It can be oxidized to sulphur trioxide, which in the presence of water vapor is readily transformed to sulphuric acid mist. Oxides of Nitrogen (NO_x) causes a wide variety of health and environmental impacts because of various compounds and derivatives in the family of nitrogen oxides, including nitrogen dioxide, nitric acid, nitrous oxide, nitrates, and nitric oxide. NO₂ is a reddish-brown gas with a pungent and irritating odour. It transforms in the air to form gaseous nitric acid and toxic organic nitrates. Nitrogen dioxide can have both acute and chronic effects on health, particularly in people with asthma. NO₂ causes inflammation of the airways.

Elevated levels of noise have adverse effects varying from hearing loss to annoyance. Annoyance and psychological damage would occur at much lower noise levels. The

inorganic components constitute a small portion by mass of the particulates; the high level of Pb can induce severe neurological and hematological effects on the exposed population especially children. Details of pollutants effects are given below.

1.5.1 Health Effects of Particulate Matter (PM₁₀ & PM_{2.5})

Particulate Matter has a diameter \leq 10 μ m and diameter \leq 2.5 μ m when inhaled would penetrate beyond the larynx.

- Small particles penetrate deeply into the lung and can cause respiratory disease such as emphysema and bronchitis, and aggravate existing heart disease.
- Ultra fine particles ranging from 0.001 to 0.1 micron in diameter are able to penetrate deep into the lung and to the alveolar sacs where gaseous exchange occurs.
- Further these particles increase the rates of blood flow and vascular permeability to white blood cells, elevating clotting activity, constriction of the airways and fever induction.

1.5.2 Health Effects of Sulfur Dioxide (SO₂)

Elevated value of SO₂ may cause- irritation of the eyes, nose and throat, choking and coughing.

- Reflex cough, irritation, and a feeling of chest tightness, which may lead to narrowing of the airways, particularly likely to occur in people suffering from asthma and chronic lung disease, whose airways are often inflamed and easily irritated.
- Oral inhalation of larger volumes may reach the segmental bronchi and damage the organ and exposure of the eyes (eg. in an industrial accident) can cause severe burns and resulting in the loss of vision.
- Repeated or prolonged exposure to moderate concentrations may cause inflammation of the respiratory tract, wheezing and lung damage other health effects include headache, general discomfort and anxiety.

1.5.3 Health Effects of Oxides of Nitrogen (NO_x)

NOx causes a wide variety of health and environmental impacts because of various compounds and derivatives in the family of NOx including NO₂, HNO₃, NO, nitrates and nitric oxide.

- Nitrogen dioxide (NO₂) is associated with mortality and a range of morbidity outcomes.
- NO₂ can be used as a marker of traffic proximity and convenient metric for modelling the health impacts of traffic pollution and evaluating abatement policies.
- Long term exposure to NO₂ may affect lung function and lowering the resistance to diseases such as pneumonia and influenza.
- Extremely high-dose exposure (as in a building fire) to NO₂ may result in pulmonary edema, diffuse lung injury and development of acute or chronic bronchitis.
- Industrial exposures to nitric oxide can cause unconsciousness, vomiting, mental confusion, and damage to the teeth.
- Exposure to low levels of nitrogen oxides in smog can irritate the eyes, nose, throat and lungs and can cause coughing, shortness of breath, fatigue, and nausea.

1.5.4 Health Effects of Noise Pollution

Elevated Noise levels of ambient air may have cause adverse health effects.

- Noise produces both temporary and permanent hearing loss.
- Noise can range from the bursting of the eardrum to permanent hearing loss, cardiac, cardiovascular changes, stress, fatigue, dizziness and lack of concentration.
- Continuous noise causes an increase in cholesterol level resulting in constriction of blood vessels making prone to heart attack and stress.

1.5.5 Health Effects of Trace Element (metals)

Metals or trace element (Pb & Ni) which are bind to inhalable particulate fraction $(PM_{10} \& PM_{2.5})$ easily bind to cell membrane.

- Trace metals absorbed in human body through inhalation eventually reach target organs viz brain, liver, blood, reproductive organ or any other system.
- High levels of Pb can induce severe neurological and hematological effects on the exposed population especially children, whereas Ni is known for inducing carcinogenic effects in human through inhalation.

In the present study, the concentration of SO_2 and NOx were found to be below permissible limit (80 μ g/m³) of NAAQS (MoEF 2009), but there are several reports suggesting that gaseous pollutants are related with respiratory diseases and reproductive and developmental effect even at low concentrations. Vehicular traffic and NO₂ are associated with significantly higher risk of lung cancer.

1.6 CONCLUSIONS

During pre monsoon (April-May), 2017 we have monitored air pollutants such as PM_{10} , $PM_{2.5}$, SO_2 , NO_x and trace metals for the assessment of ambient air quality. Besides, we have also monitored noise level during day and night time at 9 locations. The results revealed as follows-

- The RSPM (PM₁₀) level at all the monitoring locations of residential, commercial and industrial areas were higher than the NAAQS.
- The mean level of Fine particles (PM_{2.5}) at all the monitoring locations of residential, commercial and industrial areas was higher than the NAAQS.

- The monitoring values of sub fractions of particles were found to be higher in commercial place. Presently there is no guideline/NAAQS for these sub-fractions fine particles. There is considerable toxicological evidence of potential detrimental effects of these sub-fraction particles on human health.
- → The concentration of gaseous pollutants, SO_2 and NO_x were below the prescribed NAAQS (80 µg/m³) at all the locations but showed slightly lower values compared to previous year with little exception. The lower values especially in the Alambagh, Charbagh areas might be due to low volume to heavy traffic on the metro construction route than the previous years.
- The noise level at all the locations except in industrial area during day and night time showed higher level than their respective permissible limits.
- Overall results indicate that PM₁₀ and PM_{2.5} showed increasing trend and associated metals are one of the major causes for deterioration of ambient air quality.
- Elevated levels of air pollutants and their effects on human health is a serious issue. To resolve the issue, comprehensive studies is required of in respect of present status of different pollutants and their trends, sources of pollutants, public health risk assessment for future planning urban areas.
- Regulatory authorities, National Institute, academicians and NGOs should take this issue seriously with authentic research, formation of viable rules and their proper implementation as well as mass awareness amongst public.

1.7 RECOMMENDATIONS FOR MITIGATION OF AIR POLLUTION

- 1. Major roads of the city should be widened as far as possible.
- 2. Suitable modification on crossing for smooth traffic flow.
- 3. Encroachments be removed for smooth flow of traffic.
- 4. Restore foot path for pedestrians.
- 5. Provision of parking facilities by private operators on vacant private land.
- 6. Government should increase the parking charges on hourly basis to discourage the use of personal vehicles in congested areas.
- Subsidized public mass transport (Metro, Monorail etc.) must be introduced/ strengthened to minimize use of personal vehicles.
- 8. Improvement in traffic management.
- 9. Public awareness programme of air pollution and its health effects, reduction of automobile pollution by proper maintenance of vehicles, driving skills.
- 10. Systematically develop residential complex at the periphery of the city with all facilities to reduce crowd from central areas of the city.
- 11. Provision of bus stands on all the outgoing highways to reduce traffic load inside city.
- 12. Removal of garbage dumps along the roads.
- 13. Ban on burning of dry leaves, tyres or any other type of solid waste and arrangement for its proper disposal.
- 14. Plantation of trees wherever possible in parks, open spaces and road side areas.
- 15. Installation of more CNG filling stations across the city.
- 16. Encouragement for battery operated or hybrid vehicle.
- 17. Promoting solar energy as an alternate to D.G. sets.
- 18. Pressure horns to be removed from all vehicles and avoid/ minimize use of horn.

Acknowledgements:

We acknowledge Analytical Chemistry Division, CSIR-IITR, for analytical and technical support. We express our sincere thanks to Mr A.K. Tripathi, Regional Transport Officer and Mr Raghabendra Singh ARTO, Administration, Transport Nagar, Lucknow, Mr. D.K. Garg, Regional Manager, Lucknow City Transport Services Limited, Gomti Nagar, Lucknow, Mr Tribhuban Pandey, Sr Manager, Retail sales, Indian Oil Corporation (IOC), Lucknow, Mr Anilesh Kumar, Sr Manager, Retail Initiatives (U.P.), Bharat Petroleum Corporation Ltd (BPCL), Lucknow and Mr Prakash Kumar Bhaduria, Chief Regional Manager, Hindustan Petroleum Corporation Limited (HPCL), Lucknow and Mr Surya Prakash Gupta, Chief Manager (Marketing), Green Gas Limited, Lucknow for providing us necessary vehicular and oil consumption data. We also express our sincere thanks to all who provided necessary facilities at different monitoring locations.

वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH

Annexure: 1 Skill Development

Ambient Air and Stack Monitoring Technique: Hands-on-Training

वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH

Annexure 2: Brochure - Public Awareness for Clean Environment

वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH

प्लास्टिक का कम से कम प्रयोग करें। सामान लाने के लिये कपड़े या जूट के थैले का प्रयोग करें।

